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Energy dissipation and trapping of particles moving on a rough surface
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We report on an experimental, numerical, and theoretical study of the motion of a ball on a rough inclined
surface. The control parameters areD, the diameter of the ball,u, the inclination angle of the rough surface,
andEki , the initial kinetic energy. When the angle of inclination is larger than some critical value,u.uT , the
ball moves at a constant average velocity, which is independent of the initial conditions. For an angleu
,uT , the balls are trapped after moving a certain distance. The dependence of the traveled distances onEki ,
D, andu is analyzed. The existence of two kinds of mechanisms of dissipation is thus brought to light. We find
that for high initial velocities the friction force is constant. As the velocity decreases below a certain threshold
the friction becomes viscous.@S1063-651X~98!01804-2#

PACS number~s!: 46.10.1z, 83.70.Fn, 81.05.Rm
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I. INTRODUCTION

Due mainly to the nonlinear and dissipative character
their interactions, flowing grains exhibit a range of compl
and fascinating behavior such as density waves@1#, ava-
lanches@2#, arching@3#, and segregation@4#. The energy ex-
change among the grains and between grains and wal
particularly important, but not well understood. The so
friction force itself is still an open problem@5# dating back to
the work of Coulomb. In addition, the collective effects
this solid friction in a quasistatic deformation of a granu
solid are not well understood@6,7#.

We have performed several experiments@8# on the motion
of balls on rough inclined planes. One of our most import
results is that in a regime characterized by an average
stant velocityV, the macroscopic friction force is ‘‘viscous,’
i.e., proportional toV. In the (D,u) parameter space, wher
D is the diameter of the moving ball andu the inclination
angle, the constant velocity regime, which we call regimeB,
is sandwiched between a decelerated-trapping regimeA ~for
smallD and/oru) and a regimeC in which the ball jumps on
the plane, and eventually can reach a chaotic motion@9#. In
this paper, we focus on how the ball loses its energy in
decelerated-trapping regime,A.

After a short description of the experimental procedu
we present results of the stopping distance of balls with
initial kinetic energy. We then discuss energy dissipation
Sec. III, and in the last section we propose a phenomenol
cal model and compare it with numerical simulation.

II. EXPERIMENTAL PROCEDURE

The experimental setup used in this work has been
scribed in detail elsewhere@10,11#. A rough plane is con-
structed by sticking particles~see below! on an adhesive sur
face. This surface is placed on a thick glass plane suppo
by a metal frame to prevent warping and a jack that allo
the accurate adjustment and measurement of the ang
571063-651X/98/57~4!/4743~8!/$15.00
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inclination,u, which is one of the control parameters in o
experiment. The rough surface is made of a monolaye
sifted rolled sand grains with mean radiusr , 0.2 mm<r
<0.25 mm. These grains are glued to the adhesive surfac
such a way as to obtain a homogeneous geometrically di
dered rough surface with a surface fraction compacity cl
to 0.8. We used this surface to study the motion of st
spheres of diameter 1.6 mm<D<10.3 mm.

In order to control the initial kinetic energy supplied
the ball ~i.e., the initial speed with which the ball hits th
rough surface! a thin smooth plastic sheet is placed on t
rough surface in the region where the ball is launched. A
of parallel and equally spaced lines is drawn on the sh
perpendicular to the direction of maximum slope of t
plane. The first line is drawn at a distance equal to the sm
est rolling ball radius from the edge of the sheet neares
the rough surface. To study the behavior of rolling balls w
very low initial kinetic energy,Eki'0, we release them from
this first line. To increase the initialEki , we simply release
the ball from one of the other lines traced higher up on
plane. It is then trivial to see thatEki}Xi , whereXi is the
distance traveled over the smooth surface.

The experimental procedure is as follows. The inclinati
angle of the plane is fixed at a desired value, and a stra
barrier is placed at the location that gives the desired ini
kinetic energyEki . Twenty balls of a given radiusR are
positioned on the barrier on the uphill side and not touch
each other. Removing the barrier releases the balls, w
are then accelerated as they move the same distanceXi on
the smooth surface, arriving at the rough surface with
same initial kinetic energyEki . Since we have set the incli
nation angleu in the range corresponding to the pinnin
regimeA the released balls will come to a stop on the rou
plane at various distancesLi . The susbscripti denotes a
particular pinned ball. This procedure is repeated 35 tim
with the same experimental settings to collect statistics.
then repeat the experiment for different values ofEki , R, and
u, always keepingu in the pinning regime. The uncertaint
4743 © 1998 The American Physical Society
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4744 57C. HENRIQUEet al.
in length measurements is of the order of61 mm and the
number of balls for each set of parameter values investig
is large enough to have good statistics.

III. STOPPING DISTANCE OF BALLS
WITH LOW INITIAL KINETIC ENERGY

With the method described above, we measured the
tanceLi traveled on the rough surface by each ball and fo
wide range of control parameter values (1.6 mm<D
<10.6 mm and 1.5°<u<12.5°). In all casesXi is taken as
small as possible, typically around 2 mm. In Figs. 1~a! and
1~b! typical Li distributions are shown forD52 mm andu
53° and 5°, respectively. It can be seen that these distr
tions peak for a traveled distanceLi of the order of the di-
ameter of the moving ball~2 mm!. The distributions decay
for larger values of the traveled distance, the decay be
faster for the smalleru.

We found that the decay of these distributions for t
larger values ofLi is well fitted by an exponential:

N5N0e2aLi. ~3.1!

The solid lines in Figs. 1~a! and 1~b! are fits obtained with
a52.9 and 0.5 cm-1, respectively. Similar exponential distr
butions were found for the stopping distance by Rigui
et al. @8#, but working under experimental conditions corr
sponding to regimeB, where the moving ball reaches
steady, albeit fluctuating, velocity. In this regime, the ba
are occasionally stopped by large holes on the surface. T
results were well fitted witha varying with u as

a5exp~2aD3sin2u!, ~3.2!

wherea is a constant.
In order to complete and verify this law, we have pe

formed a systematic study of the variations ofa with u. In
Fig. 2 we showa as a function ofu for D52 mm. Similar
results were also found for all theD values studied. Two
different behaviors are observed: A linear variation w
large negative slope for inclination angles lower than 4° f
lowed by a crossover to a different smoothly decreas
curve tending to zero for angles larger than 5°. Good ag
ment was found using Eq.~3.2! for this last part of the curve
as shown in the figure~solid line!. However, it is clear that
Eq. ~3.2! is not valid for u values smaller than 4°. Thi
clearly demonstrates the existence of a qualitative chang
the trapping mechanism of the rolling ball when the inclin
tion angle goes from a value lower than 4° to a larger o

FIG. 1. Histogram of the stopping distance forD52 mm ~a!
u53°5, ~b! u55°, Xi'2 mm.
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To find the angle at which the first trapping mechanism d
appears, we look for the intercept with theu axis of the
straight line in Fig. 2. We define this angleuT , for which
a50 as the transition angle for which the trapping mech
nism of regimeA has disappeared. In Fig. 2,uT54.6°. This
value is very close to that found previously@10# for the angle
uAB at which the transition between the decelerated reg
~regimeA) and the mean constant velocity one~regimeB)
occurs~for the sameD). In the same way, we can find th
anglesuT corresponding toa50, for all studiedD values.
TheseuT angles are compared with theuAB values previ-
ously reported@10#. We find very good agreement for larg
values ofD, and slight differences for smaller ones.

We can therefore conclude that there are two trapp
mechanisms: One due to large wells~disorder! in the surface,
and the other one todissipation, which is controlled to a
large degree by the relative smoothness seen by the ro
ball. The measurement of the dependence ofa on u de-
scribed above provides a more physical and precise crite
for determining experimentally the transition line betwe
these two regimes.

The fact that in Fig. 2 the transition between the tw
observed behaviors as a function ofu occurs smoothly indi-
cates that near the transitionboth trapping mechanisms ar
important.

In fact, this experimental distribution of the stopping di
tances and their exponential fits was predicted using a sim
two-dimensional stochastic model.~The experiments are, o
course, three dimensional: The two directions defining
rough plane, and the direction perpendicular to it!. The above
experimental verification came later. In this model one sta
with Newton’s equations of motion for the moving ball
which are then simplified by making some approximatio
motivated by the geometry of the collisions and the prop
ties of the dissipation. The resulting model describes well
statistical properties~i.e., averages and distributions! of
physical quantities of the moving balls. For details of t
model see Ref.@12#. In Fig. 3 we show thea versusu plot
obtained from the stochastic model. We see that it has
same form and functional dependence as that found in
experiments. The actual values ofa and u given by the
model differ from the experimental ones. The model is t
simple to give accurate quantitative predictions, for examp

FIG. 2. Decay constant of the stopping distance distributiona
as a function of the rough surface inclination angleu, for D
52 mm.
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57 4745ENERGY DISSIPATION AND TRAPPING OF . . .
rotation is ignored. However, the excellent qualitative agr
ment between the predictions and the experimental res
means that the role of geometry, which is emphasized in
model, is indeed crucial.

We define the medianL* of the stopping distance distri
bution as the length for which 50% of the balls are trapp
on the rough surface. Since we found exponential distri
tions in all cases we have studied, we can writeL* as

L* 5
u ln~0.5!u

a
. ~3.3!

As seen in Fig. 2a52asin(u)1b, and from the defini-
tion of uT , a(uT)50, we see that au→uT

5a(u

2uT)cos(uT), and thereforeLu→uT
* }1/uu2uTu. Thus,L* di-

verges foru→uT in a way reminiscent of a phase transitio
with a critical exponent equal to unity.

In order to verify this behavior we measureL* for the
distributions corresponding to different pairs of control p
rameter values (u,D). In Fig. 4 the dependence ofL* on u is
shown for threeD values. ForD510.3 mm the transition
between regimesA and B occurs atu52.5° and for D

FIG. 3. Same as in Fig. 2 but obtained from the stochastic mo
@12#.

FIG. 4. Median distributionsL* as a function ofu for (L) D
510.3 mm, (s) D53 mm, (x) D51.6 mm.
-
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e

d
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53 mm atu54.4°. In both cases the very rapid increase
L* as u→uT from below demonstrates an approximate
vergence consistent with the above discussion. Recall tha
u→uT we have two competing pinning mechanisms an
therefore no true divergence. The above ‘‘divergence’’ w
based on the idealization that as we approachuT from below,
pinning in regimeA completely disappears. For the smalle
D value shown in the figure (D51.6 mm), the agreemen
between the proposed functional dependence ofL* on u and
the experimental results is also clear, even if theA-B transi-
tion is not yet reached.

IV. ENERGY DISSIPATION IN REGIME A

In this section we discuss energy dissipation in regimeA,
i.e., small angles of inclination,u, where the balls always
come to rest. With this goal in mind, balls were releas
from the various lines marked on the plastic sheet, as
scribed in Sec. II. In this way, controlled initial kinetic ene
gies were supplied to the balls, and their stopping distan
were studied.

We will first show that the transitionA-B is not affected
by the initial kinetic energy. This is in agreement with pr
vious characterization of regimeB as that interval of incli-
nation angles for which the balls reach an average ste
state velocityindependentof the initial velocity ~or kinetic
energy! @12–14#. We then analyze, for a very small inclina
tion angle (u52°), the stopping distance distributions fo
different initial kinetic energies and severalD values. After
that, we investigate the dependence of the mean dista
traveled by the ball on its initial velocity. Finally, we pro
pose a phenomenological interpretation of the experime
results obtained.

A. Experimental results

To study the influence of the initial velocity (Vi) on the
transition between regimesA and B, 100 balls of diameter
D53 mm were released fromXi50.3 cm (Vi'5cm/s) and
then fromXi520 cm (Vi'45 cm/s!. The stopping distance
of each ball was measured, andL* calculated. This proce-
dure was repeated for ten different inclination angles of
rough surface, 2.7°<u<6°, in order to ensure the change
the dynamical regime.

We have shown before that, with its rapid increase~‘‘di-
vergence’’!, L* itself characterizes the transition. In Fig.
we show this divergence ofL* as a function of the inclina-
tion angle for the two values of the initial velocity,Vi55,
45 cm/s. It is clear that theA-B transition occurs at the sam
angle for both curves independently ofVi . This is so even
though the initial velocity has a great influence on the tra
eling distance in regimeA.

We now discuss the evolution of the distribution of sto
ping distances as a function of the initial kinetic energy
the balls. The experimental procedure is as follows: The c
trol parameters (u andD) were fixed at values correspond
ing to regimeA and a large enough number of balls we
released at differentXi . The distance traveled by every ba
before being trapped was measured. We show the distr
tions for the stopping distances in Fig. 6 forD
510.3 mm, u52° and four values ofVi . The distributions

el
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4746 57C. HENRIQUEet al.
are essentially the same, except that the locations of t
centers move towards increasing values of the traveled
tance as the initial velocity is increased. Note that the disp
sion is very small.

We observe experimentally that those balls that be
their motion with larger initial velocity travel a longer dis
tance before getting trapped. Moreover, balls released f
the sameXi ~i.e., the same initial velocity! move through
almost the same distance on the rough surface before ge
trapped over a distance of a few centimeters: The disper
of the distribution of stopping distances is very small. Th
leads us to postulate that the ball does not get trapped un
its velocity goes under some threshold value. To reach
value, it must first travel a certain distance on the rou
surface to dissipate enough energy. Using a video cam
and image processing, we were able to evaluate this thr
old value. We launch several balls (D56 mm, u52°) with
different initial kinetic energies (0.5 cm<Xi<18.5 cm) and
for each ball the velocity is measured every acquired fra
~15 frames per second!. Balls travel a distance of about 1
cm before getting trapped. Our measurements indicate
balls do not get trapped when their speed exceeds 3 c
Note that the velocity below which the ball can be trapped
independant of the initial velocity.~The same experimen
was performed forD56 mm, andu52.85° the threshold
obtained in this case is 6.5 cm/s.! Since the distributions o

FIG. 5. Variations ofL* with u, for D53 mm, and two initial
velocities: (s) Vi'5 cm/s and (d) Vi'45 cm/s.

FIG. 6. Distributions of the stopping distance forD
510.3 mm, u52°, and different initial square velocitiesVi

2}Xi ,
from left to right Xi50.5, 4.5, 10.5, and 16.5 cm.
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stopping distances are rather narrow and symmetric, the
erage valueL̃ is a good variable to use to characterize t
energy loss. We show in Fig. 7 a plot of L̃ as a function of
Xi , for u52° andD510.3, and 4.7 mm.

The first thing to notice is thatL̃ increases with the initial
kinetic energy (}Xi) of the balls. We also see that forD
510.3 mm andXi.10 cm, this dependence is linear. On t
other hand, for 0 cm<Xi<10 cm, L̃ increases withXi fol-
lowing another law. Note that forXi50, L̃ must be 0. The
same behavior is seen forD54.7 mm but, in this case, the
crossover between the two dependences is aroundXi
52 cm.

The presence of two different behaviors for the stopp
distance as a function of the initial kinetic energy sugges
change of the nature of the friction force between the t
regimes. At the moment we cannot characterize these fo
any further. However, in previous work@8,12,10,11#, which
focused on regimeB, friction mechanisms were extensive
studied experimentally, numerically, and theoretically. On
three types of friction force are possible:F5K1 , F
5K2V, andF5K3V2. In the following section we use thes
experimental results to propose a phenomenological mo
with few parameters that reproduce the experimental res

B. Physical model

Our objective is to describe the dynamics of a ball movi
down a rough slightly inclined surface. In light of the expe
mental results just described, we will assume that two diff
ent types of friction forces exist. Which type of force ente
into play depends, among other things, on the initial veloc
of the ball. It is clear that when moving down the plane
ball loses its initial energy by collisions and friction with th
surface grains and finally is trapped. However, not much
known about the way in which this occurs. In particula
nothing is known about the average velocity as a function
the distance traveled. So, the main assumptions of our m
are as follows:~a! it is possible to define such a velocit
function,V(x), for all balls wherex is the distance traveled
and ~b! to get trapped,V(x) must be smaller than a certai
threshold valueVmin . In other words, we assume that
decrease its velocity from a given valueV0 to a smaller one,
V1, a ball has to travel the same distancel01 independent of
its initial velocity.

FIG. 7. Average stopping distanceL̃ as a function ofVi
2}Xi ,

for u52°, (n) D510.3 mm, and (s) D54.7 mm.
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57 4747ENERGY DISSIPATION AND TRAPPING OF . . .
Therefore, two conditions onV(x) are the following:~1!
At the starting point,x50, V(0)5Vi ~the initial velocity!,
and ~2! for the ball to get trapped at a distanceL, we must
haveV(x5L)<Vmin . Clearly, since the physical quantitie
of interest fluctuate and are given by some distribution,
quantities entering in the model are statistical averages.

With the above considerations, we can write

L 0̃5L 1̃1l01̃, ~4.1!

whereL 0̃ andL 1̃ are the average stopping distances of ba
released with initial velocitiesV0 andV1,V0, respectively,
andl01̃ is the mean distance traveled by the first set of b
as their velocity decreases fromV0 to V1. Differentiating this
equation with respect toV2, we obtain

]l~V!̃

]V2
52

]L~V!̃

]V2
. ~4.2!

The right-hand side of Eq.~4.2! may be evaluated directly
from the slope of the experimental results forL(V)̃ as a
function of Xi presented in the previous section~Fig. 7!.
~Recall thatXi , the distance through which the ball is acce
erated before hitting the rough plane, is directly proportio
to the initial kinetic energy and thusVi

2 .! As we have already
mentioned, for large enough initial kinetic energies, the
pendence ofL̃ on V2 is linear. Therefore, Eq.~4.2! leads to
]V2/]l(V)̃5const. This is the energy gradient which, the
fore, must be equal to the force. We thus find that, at la
enough velocities, a ball moving down a rough surface s
fers a constant friction force,F5]V2/]l(V)̃5mK, and that
the experimental determination ofL(Eki)̃ provides a way to
evaluate it.

On the other hand, for smaller initial kinetic energies w
have found a different relation betweenL̃ andV2 which, in
fact, implies another mechanism for energy dissipation.
this case, we assume a viscous type friction force~i.e., pro-
portional to the velocity!. For each pair of values (u,D), we
define a velocityVl for which the crossover between the tw
types of frictional forces occurs.

In other words, we propose that a ball of diameterD,
moving down a rough surface made of grains of mean rad
r , and inclined an angleu, suffers a constant friction force
(F5mK), while its velocityV is larger thanVl(u,D). When
its velocity is betweenVl(u,D) and Vmin(u,D) it suffers a
viscous frictional force (F5maV), and finally it gets
trapped on the rough surface only ifV<Vmin(u,D).

To verify this model, we calculate the traveled distanc
that it gives and compare them with the experimental on
When a ball is released with a velocityV.Vl , the distance it
travels according to this model is easily calculated to be

L~V!̃5
1

2K
~V22Vl

2!1
Vl

a S 12
Vmin

Vl
D . ~4.3!

On the other hand, if the release velocityV is less thanVl ,
the distance traveled is
e

s

s

l

-

-
e
f-

n

s

s
s.

L~V!̃5
V

aS 12
Vmin

V D . ~4.4!

We arrive then at two equations with four paramete
a, K ~which characterize the two friction forces!, Vmin , and
Vl .

Using Eq. ~4.2!, K(D) was calculated by fitting to the
linear part of theL̃ versusVi

2 curves, as explained just afte
Eq. ~4.2!. K, which gives the constant frictional force, is
function ofD, the diameter of the ball, since the slopes of t
linear regions in Fig. 7 depend onD. To determinea, which
gives the viscous force, andVmin we fit Eq. ~4.4! to the
curved regions~small Xi) of Fig. 7. But, in this region, we
have sufficient data to make such a fit only forD
510.3 mm. However, note that for smallXi ~small initial
velocity! the stopping distance appears to be roughly
same for allD values we studied. We, therefore, take t
values of a and Vmin , which we determined forD
510.3 mm as constant for allD.

Finally, the values ofVl for the various balls~i.e., differ-
ent D) were evaluated as follows. The term that is indepe
dent ofV in Eq. ~4.3! is given by

j 52
Vl

2

2K
1

Vl

a S 12
Vmin

Vl
D . ~4.5!

This term, i.e.,j , can be evaluated directly, for eachD, from
the intersections with the vertical axis of the straight line fi
to experimental values ofL̃ versusVi

2 . With j thus evalu-
ated, Eq.~4.5! yields two values ofVl(D). The smaller one
is taken as the physical value ofVl(D), which corresponds to
a passage from more to less dissipative motion. Figur
shows the result of this analysis for all the studied values
D. Here we plot the experimental average stopping distan
L̃ , as a function of the initialvelocity~not Xi}V2). The solid
lines show the calculated values using Eqs.~4.4! and~4.3!. It
can be seen that the agreement is very good. Note that s
a andVmin have been taken as constants for allD, we only

FIG. 8. Average stopping distanceL̃ as a function ofVi in
arbitrary units, foru52°, (n) D510.3mm, (s) D57.1 mm,
(x) D56.3 mm, (d) D54.7 mm, (v) D53 mm, and (L)D
52mm. In filled lines the calculated variation for the correspond
D values.
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4748 57C. HENRIQUEet al.
have two fitting parameters left,K andVl . So, the very good
agreement with experiments is obtained by tuning only t
parameters.

The values of the parameters are given in Table I. T
value ofVmin for the largestD is consistent with zero. It is
not possible to give a meaningful value for the stopping d
tance,L̃ , when this value is smaller than the diameter of t
ball, D. We have founda50.03 s21 for the prefactor in the
viscous force whileK andVl values range between 500 an
50 cm s22 and 1 and 21 cm/s, respectively, for values ofD
increasing from 4 to 20.6.

Note that the maximum value of the viscous decelerati
corresponding to the largestVl , is around 0.6 cm s22. This
means that a ball withD510.3 mm that begins its motion
over the rough surface with, for example, a velocity
50 cm/s, ‘‘feels’’ a constant deceleration of 50 cm s22 until
it reaches a velocity of 21 cm/s. At that moment, the fo
abruptly becomes viscous and the deceleration decrease
0.6 cm s22. The velocity then continues to decrease and
does the friction force. When the velocity reaches the m
mum valueVmin the ball gets trapped.

This behavior is easily motivated physically. When t
ball is launched with a high velocity, collisions with th
bumps on the surface cause it to undergo rather la
bounces. The time of flightdt of these~ballistic! bounces is
determined primarily byV' ~the velocity normal to the sur
face!, dt}V' , and therefore the frequency of collisions
proportional toV'

21 . With each collision the ball loses a
amount of energy proportional toV' , due to the coefficient
of restitution. Therefore the energy lost per second, the p
uct of these two quantities, is constant, i.e., a constant f
tion force. More elaborate calculations find similar resu
@9#.

At smaller velocities, the bounces are not high, the b
probes the geometry of the surface and the motion is a m
ture of bouncing and rolling. The time of flight is, therefor
more complicated. The motion closely resembles that in
constant velocity regime, thus giving viscous friction. T
difference between this motion and the constant velocity
gime is that here the energy gained by the ball moving do
the slope cannot compensate for the energy lost. The
eventually gets pinned.

Vl appears like a limit velocity at which the ball can ju
‘‘fly over’’ the grains constituting the surface.

V. NUMERICAL SIMULATIONS

To investigate in more detail our conjectures concern
the motion of the particle we performed numerical simu
tions of the system. The motion of the particle was simula
using soft sphere molecular dynamics~for details see@15#!.
The sphere moves on a plane configuration scanned in f
one of those used by Riguidel in his experiments@8#. As

TABLE I. Values of the different parameters, foru52°.

D (mm) 2 3 4.7 6.3 7.1 10.3

K (m s-2) 4.9 2.6 1.2 0.8 0.7 0.5
Vl (cm s-1) 1.2 2.8 7.3 9.1 10.8 20.7
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material parameters we use a normal coefficient of restitu
en50.6 and a coefficient of friction ofm50.13.

First we checked that we find the same global behavio
in the experiments. Figure 9 shows the mean stopping
tance, averaged over 60 balls per starting velocity as a fu
tion of the initial kinetic energy. We find the same behav
as in the experiments, a linear region for higher starting
locities, and a not so well defined different shape of the cu
for smaller starting velocities.

We now want to check whether the ball really covers t
largest part ofL̃ in large jumps. Figure 10 shows the distan
covered between jumps as a function of time for differe
starting velocities. Obviously, the first part of the motio
consists of very wide jumps~covering a few particle diam-
eters at high starting velocities!, but then drops very rapidly
to much smaller distances. The times between collisions s
denly exhibit the very regular behavior also observed
simulations of the steady state motion@15,16#: a number of
small jumps, in the course of which all normal velocity wi
respect to the ball on the plane is lost, followed by a rolli
over the rest of the ball. With the small angles of inclinati
and velocities in this case, this rolling starts very early on
ball, as is obvious from the long distances between collisi
corresponding to them. In Fig. 11 the total distance cove
in the same runs as in Fig. 10 is shown. Here, it becom
obvious that, indeed, most of theL̃ is due to the large jumps
at the beginning of the motion, and we see a very clea
defined crossover in the friction force. Only the curve cor
sponding to Fig. 10~a! does not exhibit this crossover. Th
reason is that the initial jumps were already not much lon
than a particle diameter, since the initial velocity was qu
low. Thus, the discrepancy between the two regimes of
motion is not very strong. Besides, the starting velocity c
responding to Fig. 10~a! is quite close to the lower limit of
the linear region in Fig. 9, i.e., close to a different type
behavior.

From Fig. 10 it is also obvious that the stoppingtime is
very similar in all cases, but that the onset of rolling appe
a bit later for higher starting velocities. As we assume in o
physical model in Sec. IV B, stopping only takes place af
the ball velocity has dropped below a certain value~in our
case somewhere around 7 cm/s!, at which point the rolling
starts. This can be seen in Fig. 12, where we have plotted
evolution of thex velocity of the ball for the same cases as

FIG. 9. Average stopping distances forD55, u51°.



ce

e
h
io
th
o

ba

an

nu-
gh
s a
all
ugh

nd
all
ver

is

ric-
ns
.
lays

ity

of

mic
an

ol

n

me

57 4749ENERGY DISSIPATION AND TRAPPING OF . . .
Fig. 10. The point where the ball starts to move in boun
much smaller than a ball radius~the stage prior to rolling! is
marked with a small arrow for each trajectory.

It can also be seen from these curves that after a v
rapid drop in the velocity after the first few collisions wit
the plane, the velocity seems to decrease in a linear fash
though with a slope that seems to depend slightly on
initial velocity. Then, when the particle enters the phase
the motion consisting of a number of bounces with each
it passes~and eventually some rolling!, the friction force
experienced by the particle drops to a much lower value
seems to be independent of the initial velocity.

FIG. 10. Distance covered by the ball between successive c
sions with the plane for three different starting velocities~a! v i

520 cm/s,~b! v i530 cm/s, v i540 cm/s. The diameter of balls o
the plane is 1 mm.
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VI. CONCLUSION

We have investigated by means of experiments and
merical simulations the movement of a single ball on a rou
inclined plane, at small inclination angle. This has given u
better understanding of the energy dissipation at sm
angles. We have shown that a ball that has a large eno
initial velocity V0 first bounces on the rough surface a
suffers a constant friction force. Clearly in this case the b
cannot be trapped if its velocity is larger than the crosso
velocity Vl . When the velocity reachesVl , the friction force
suddenly becomes viscous: the dynamics of the motion
now similar to that observed in regimeB. The key for un-
derstanding these two mechanisms of dissipation, i.e., f
tion forces, is the difference in the nature of the collisio
when the velocity is above or belowVl as explained above
We have also shown that the geometry of the surface p
an important role in the trapping of the ball. In regimeA the
ball is first slowed down gradually and when the veloc
finally reaches a threshold valueVmin ~which appears to be
independentof initial conditions! the ball is trapped. The
trapping probability decreases linearly with the inclination
the plane. For the transition angleuT , this trappping mecha-
nism disappears and the ball crosses over into the dyna
regimeB where it moves on the plane with a constant me

li-

FIG. 11. Total distance covered by the ball as a function of ti
for the same cases as in Fig. 10. Full line corresponds to~a!, dashed
line to ~b!, dot-dashed line to~c!.

FIG. 12. Velocity of the ball~same as in Fig. 10!. Full line
corresponds to~a!, dashed line to~b!, dot-dashed line to~c!.
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velocity and is subjected to a viscous friction force@8,10#. In
this regime, the ball can still be trapped by the occasional
defect on the surface but its trapping probability decrea
exponentiallywith the angle of inclination. The fact that i
both regimesA andB the friction force is viscous just befor
the ball gets trapped emphasizes the important fact that
difference between the two regimesA and B is not of dy-
namic origin, but due to two different trapping mechanism

The ‘‘divergence’’ of the medianL* of the stopping dis-
tance~defined as the length for which 50% of the balls a
trapped! at uT is seen to indicate clearly the transition b
tween theA andB regimes. The values ofL* depend on the
initial velocity but the divergence always occurs at the sa
angle uT . This shows that the location of the transition
-

oli

v.

s.
ig
s

he

.

e

independant of initial kinetic energy. Numerical simulatio
gave us ‘‘microscopic’’ details of the motion~like the time
between collisions! which agreed with and confirmed th
experimental measurements and our explanations.
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