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We report on an experimental, numerical, and theoretical study of the motion of a ball on a rough inclined
surface. The control parameters &ethe diameter of the bal, the inclination angle of the rough surface,
andEy;, the initial kinetic energy. When the angle of inclination is larger than some critical vaiuéy , the
ball moves at a constant average velocity, which is independent of the initial conditions. For andangle
< #r, the balls are trapped after moving a certain distance. The dependence of the traveled dist&hces on
D, and@is analyzed. The existence of two kinds of mechanisms of dissipation is thus brought to light. We find
that for high initial velocities the friction force is constant. As the velocity decreases below a certain threshold
the friction becomes viscoupS1063-651X98)01804-73

PACS numbd(s): 46.10+z, 83.70.Fn, 81.05.Rm

I. INTRODUCTION inclination, #, which is one of the control parameters in our
experiment. The rough surface is made of a monolayer of
Due mainly to the nonlinear and dissipative character ofifted rolled sand grains with mean radius 0.2 mmsr
their interactions, flowing grains exhibit a range of complex<0.25 mm. These grains are glued to the adhesive surface in
and fascinating behavior such as density walEs ava- such a way as to obtain a homogeneous geometrically disor-
lanched 2], arching[3], and segregatiop4]. The energy ex- dered rough surface with a surface fraction compacity close
change among the grains and between grains and walls te 0.8. We used this surface to study the motion of steel
particularly important, but not well understood. The solid spheres of diameter 1.6 meD=<10.3 mm.
friction force itself is still an open problef®] dating back to In order to control the initial kinetic energy supplied to
the work of Coulomb. In addition, the collective effects of the ball (i.e., the initial speed with which the ball hits the
this solid friction in a quasistatic deformation of a granularrough surfacga thin smooth plastic sheet is placed on the
solid are not well understodd,7]. rough surface in the region where the ball is launched. A set
We have performed several experimei@son the motion  of parallel and equally spaced lines is drawn on the sheet
of balls on rough inclined planes. One of our most importantperpendicular to the direction of maximum slope of the
results is that in a regime characterized by an average comlane. The first line is drawn at a distance equal to the small-
stant velocityV, the macroscopic friction force is “viscous,” est rolling ball radius from the edge of the sheet nearest to
i.e., proportional tov. In the (D, ) parameter space, where the rough surface. To study the behavior of rolling balls with
D is the diameter of the moving ball amtlthe inclination  very low initial kinetic energyE,;~0, we release them from
angle, the constant velocity regime, which we call regBpe this first line. To increase the initid,;, we simply release
is sandwiched between a decelerated-trapping redirffer ~ the ball from one of the other lines traced higher up on the
smallD and/oré) and a regimeC in which the ball jumps on plane. It is then trivial to see thd,;o<X;, whereX; is the
the plane, and eventually can reach a chaotic md@nin  distance traveled over the smooth surface.
this paper, we focus on how the ball loses its energy in the The experimental procedure is as follows. The inclination
decelerated-trapping regima, angle of the plane is fixed at a desired value, and a straight
After a short description of the experimental procedure parrier is placed at the location that gives the desired initial
we present results of the stopping distance of balls with lovkinetic energyE,;. Twenty balls of a given radiuR are
initial kinetic energy. We then discuss energy dissipation inpositioned on the barrier on the uphill side and not touching
Sec. lll, and in the last section we propose a phenomenologeach other. Removing the barrier releases the balls, which
cal model and compare it with numerical simulation. are then accelerated as they move the same disténoe
the smooth surface, arriving at the rough surface with the
same initial kinetic energ¥,;. Since we have set the incli-
nation angleé in the range corresponding to the pinning
The experimental setup used in this work has been deregimeA the released balls will come to a stop on the rough
scribed in detail elsewherel0,11. A rough plane is con- plane at various distancds . The susbscript denotes a
structed by sticking particlesee belowon an adhesive sur- particular pinned ball. This procedure is repeated 35 times
face. This surface is placed on a thick glass plane supportedith the same experimental settings to collect statistics. We
by a metal frame to prevent warping and a jack that allowghen repeat the experiment for different value€gf, R, and
the accurate adjustment and measurement of the angle &f always keeping in the pinning regime. The uncertainty

II. EXPERIMENTAL PROCEDURE
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in length measurements is of the orderol mm and the e
number of balls for each set of parameter values investigated FIG. 2. Decay constant of the stopping distance distributiens
is large enough to have good statistics. as a function of the rough surface inclination angle for D
=2 mm.
Ill. STOPPING DISTANCE OF BALLS
WITH LOW INITIAL KINETIC ENERGY To find the angle at which the first trapping mechanism dis-
appears, we look for the intercept with tifeaxis of the
With the method described above, we measured the disstraight line in Fig. 2. We define this angl, for which
tanceL; traveled on the rough surface by each ball and for ay=0 as the transition angle for which the trapping mecha-
wide range of control parameter values (1.6 ®B  nism of regimeA has disappeared. In Fig. 8;=4.6°. This
<10.6 mm and 1.556<12.5°). In all case; is taken as value is very close to that found previoug0] for the angle
small as possible, typically around 2 mm. In Figéa)land  g,; at which the transition between the decelerated regime
1(b) typical L; distributions are shown foD=2 mm andé  (regimeA) and the mean constant velocity ofregime B)
=3° and 5°, respectively. It can be seen that these distribloccurs(for the sameD). In the same way, we can find the
tions peak for a traveled distante of the order of the di- angles#; corresponding tax=0, for all studiedD values.
ameter of the moving ba[l2 mm) The distributions decay Theseg.l_ ang|es are Compared with th values previ_
for Iarger values of the traveled distance, the decay beingus|y reportec[]_O]_ We find very good agreement for |arge

faster for the smallep. S values ofD, and slight differences for smaller ones.
We found that the decay of these distributions for the we can therefore conclude that there are two trapping
larger values ot is well fitted by an exponential: mechanisms: One due to large weliisordey in the surface,
and the other one tdissipation which is controlled to a
N=Nge ki, (3.1 pation

large degree by the relative smoothness seen by the rolling

The solid lines in Figs. () and 1b) are fits obtained with P&l The measurement of the dependencexobn 6 de-
«=2.9 and 0.5 cm, respectively. Similar exponential distri- SCTibed above provides a more physical and precise criterion
butions were found for the stopping distance by Riguidelfor determmmg experimentally the transition line between
et al. [8], but working under experimental conditions corre- (€S€ two regimes.

sponding to regimeB, where the moving ball reaches a The fact that. in Fig. 2 thel transition between the .two
steady, albeit fluctuating, velocity. In this regime, the balls®PS€rved behaviors as a functionébccurs smoothly indi-

are occasionally stopped by large holes on the surface. Thef2{€s that near the transitidroth trapping mechanisms are

results were well fitted withy varying with 6 as important. _ o o
In fact, this experimental distribution of the stopping dis-
a=exp —aD3sirfd), (3.2 tances and their exponential fits was predicted using a simple
two-dimensional stochastic modé€lhe experiments are, of
wherea is a constant. course, three dimensional: The two directions defining the

In order to complete and verify this law, we have per-rough plane, and the direction perpendicular oTihe above
formed a systematic study of the variationseofwith 6. In experimental verification came later. In this model one starts
Fig. 2 we showa as a function ofg for D=2 mm. Similar  with Newton’s equations of motion for the moving balls,
results were also found for all thB values studied. Two which are then simplified by making some approximations
different behaviors are observed: A linear variation with motivated by the geometry of the collisions and the proper-
large negative slope for inclination angles lower than 4° fol-ties of the dissipation. The resulting model describes well the
lowed by a crossover to a different smoothly decreasingstatistical properties(i.e., averages and distribution®f
curve tending to zero for angles larger than 5°. Good agregshysical quantities of the moving balls. For details of the
ment was found using E¢3.2) for this last part of the curve, model see Refl12]. In Fig. 3 we show ther versusé plot
as shown in the figurésolid line). However, it is clear that obtained from the stochastic model. We see that it has the
Eqg. (3.2 is not valid for 8 values smaller than 4°. This same form and functional dependence as that found in the
clearly demonstrates the existence of a qualitative change iexperiments. The actual values af and 6 given by the
the trapping mechanism of the rolling ball when the inclina-model differ from the experimental ones. The model is too
tion angle goes from a value lower than 4° to a larger onesimple to give accurate quantitative predictions, for example,
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Rir=5.2 =3 mm atd=4.4°. In both cases the very rapid increase of
0.008 r r , T L* as #— 01 from below demonstrates an approximate di-
vergence consistent with the above discussion. Recall that as
06— 61 we havetwo competing pinning mechanisms and
therefore no true divergence. The above “divergence” was
based on the idealization that as we approégcfrom below,
pinning in regimeA completely disappears. For the smallest
D value shown in the figured=1.6 mm), the agreement
4 between the proposed functional dependende*obn 6 and
the experimental results is also clear, even if A8 transi-
tion is not yet reached.

0.006

0.004

a(cm'l)

0.002
IV. ENERGY DISSIPATION IN REGIME A

In this section we discuss energy dissipation in reghne
— e . i.e., small angles of inclinationd, where the balls always
® 04 %5 come to rest. With this goal in mind, balls were released
from the various lines marked on the plastic sheet, as de-
FIG. 3. Same as in Fig. 2 but obtained from the stochastic mode$cribed in Sec. Il. In this way, controlled initial kinetic ener-
[12]. gies were supplied to the balls, and their stopping distances
were studied.
rotation is ignored. However, the excellent qualitative agree- We will first show that the transitioA-B is not affected
ment between the predictions and the experimental resulisy the initial kinetic energy. This is in agreement with pre-
means that the role of geometry, which is emphasized in thgious characterization of regin® as that interval of incli-
model, is indeed crucial. nation angles for which the balls reach an average steady
We define the mediah* of the stopping distance distri- state velocityindependenbf the initial velocity (or kinetic
bution as the length for which 50% of the balls are trappedenergy [12—-14. We then analyze, for a very small inclina-
on the rough surface. Since we found exponential distribution angle ¢=2°), the stopping distance distributions for
tions in all cases we have studied, we can wkiteas different initial kinetic energies and seveialvalues. After
that, we investigate the dependence of the mean distance
_|In(0.5)| traveled by the ball on its initial velocity. Finally, we pro-
T a (33 pose a phenomenological interpretation of the experimental
results obtained.

0.000 : .
0.0 0.1 0.2 0.
0 (deg)

L*

As seen in Fig. 2= —asin(f)+b, and from the defini-
tion of 6r, a(67)=0, we see thata, ,=a(f A. Experimental results

~ fr)cos@), and thereforeL’;ﬂHTocllw— 6|. Thus,L* di- To study the influence of the initial velocity/{) on the
verges for6— 6 in a way reminiscent of a phase transition transition between regimes and B, 100 balls of diameter
with a critical exponent equal to unity. D=3 mm were released fron§;=0.3 cm (V;~5cm/s) and
In order to verify this behavior we measute for the  then fromX;=20 cm (V;~45 cm/3. The stopping distance
distributions corresponding to different pairs of control pa-of each ball was measured, ahd calculated. This proce-

rameter valuesd,D). In Fig. 4 the dependence bf onéis  dure was repeated for ten different inclination angles of the
shown for threeD values. ForD=10.3 mm the transition rough surface, 2.2 0<6°, in order to ensure the Change of

between regime#A and B occurs at6=2.5° and forD the dynamical regime.

We have shown before that, with its rapid incre&-

150 ' ' vergence’), L* itself characterizes the transition. In Fig. 5
we show this divergence df* as a function of the inclina-
tion angle for the two values of the initial velocity,; =5,
] 45 cm/s. It is clear that th&-B transition occurs at the same

> angle for both curves independently \6f. This is so even
> though the initial velocity has a great influence on the trav-
eling distance in regimé.
50 | ] We now discuss the evolution of the distribution of stop-
® > ping distances as a function of the initial kinetic energy of
o

100

(o]

L (cm)

*

B>
> the balls. The experimental procedure is as follows: The con-

° §° g trol parameters § andD) were fixed at values correspond-
0 w0000 . ppnpPP ing to regimeA and a large enough number of balls were
0 5 10 15 . .

0 released at differernX;. The distance traveled by every ball

(deg) i L.

before being trapped was measured. We show the distribu-
FIG. 4. Median distributiond * as a function ofg for (¢) D  tions for the stopping distances in Fig. 6 fobD
=10.3mm, ©) D=3 mm, ¢>) D=1.6 mm. =10.3 mm, 6=2° and four values o¥,;. The distributions
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FIG. 5. Variations ofL* with 8, for D=3 mm, and two initial
velocities: ©) V=5 cm/s and @) V,;~45 cm/s.
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FIG. 7. Average stopping distande as a function ofvZ«X;
for 6=2°, (A) D=10.3 mm, and Q) D=4.7 mm.

are essentially the same, except that the locations of theff{OPPing distances are rather narrow and symmetric, the av-
centers move towards increasing values of the traveled disrage valuel is a good variable to use to characterize the

tance as the initial velocity is increased. Note that the disperenergy loss. We show in Fig a plot ofL as a function of

sion is very small.

X;, for 6=2° andD=10.3, and 4.7 mm.

We observe experimentally that those balls that begin ¢ first thing to notice is thd increases with the initial
their motion with larger initial velocity travel a longer dis- o atic energy €X;) of the balls. We also see that f@
i :

tance before getting trapped. Moreover, balls released from
the sameX; (i.e., the same initial veloci)ymove through

almost the same distance on the rough surface before getti
trapped over a distance of a few centimeters: The dispersiol@wing another law. Note that foK; =0,

=10.3 mm andX;>10 cm, this dependence is linear. On the
r%her hand, for 0 creX;<10 cm, L increases withX; fol-
L must be 0. The

of the distribution of stopping distances is very small. Thissame behavior is seen f@r=4.7 mm but, in this case, the
leads us to postulate that the ball does not get trapped unle§gossover between the two dependences is aroMnd

its velocity goes under some threshold value. To reach this 2 cm.

value, it must first travel a certain distance on the rough The presence of two different behaviors for the stopping
surface to dissipate enough energy. Using a video camef@istance as a function of the initial kinetic energy suggests a
and image processing, we were able to evaluate this thresghange of the nature of the friction force between the two

old value. We launch several ball® E6 mm, 6=2°) with
different initial kinetic energies (0.5 cmX;<18.5 cm) and

regimes. At the moment we cannot characterize these forces
any further. However, in previous wofi8,12,10,1], which

for each ball the velocity is measured every acquired framéocused on regimé, friction mechanisms were extensively
(15 frames per secondBalls travel a distance of about 15 Studied experimentally, numerically, and theoretically. Only
cm before getting trapped. Our measurements indicate théfiree types of friction force are possiblé&=K;, F
balls do not get trapped when their speed exceeds 3 cm/s:K,V, andF=K;3V?. In the following section we use these
Note that the velocity below which the ball can be trapped iseXxperimental results to propose a phenomenological model
independant of the initial velocity(The same experiment With few parameters that reproduce the experimental results.
was performed folD=6 mm, and6§=2.85° the threshold

obtained in this case is 6.5 cm/Since the distributions of

40

35 ¢
30 1

FIG. 6. Distributions of the stopping distance fob
=10.3mm, #=2°, and different initial square velocitiég®=X; ,
from left to rightX;=0.5, 4.5, 10.5, and 16.5 cm.
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B. Physical model

Our objective is to describe the dynamics of a ball moving
down a rough slightly inclined surface. In light of the experi-
mental results just described, we will assume that two differ-
ent types of friction forces exist. Which type of force enters
into play depends, among other things, on the initial velocity
of the ball. It is clear that when moving down the plane, a
ball loses its initial energy by collisions and friction with the
surface grains and finally is trapped. However, not much is
known about the way in which this occurs. In particular,
nothing is known about the average velocity as a function of
the distance traveled. So, the main assumptions of our model
are as follows:(a) it is possible to define such a velocity
function, V(x), for all balls wherex is the distance traveled,
and (b) to get trappedy/(x) must be smaller than a certain
threshold valueV,,. In other words, we assume that to
decrease its velocity from a given val\fg to a smaller one,
V4, a ball has to travel the same distangg independent of
its initial velocity.
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Therefore, two conditions oW(x) are the following:(1)
At the starting pointx=0, V(0)=V; (the initial velocity),

and (2) for the ball to get trapped at a distance we must
haveV(x=L)<V,. Clearly, since the physical quantities

of interest fluctuate and are given by some distribution, the

guantities entering in the model are statistical averages.
With the above considerations, we can write

Lo=L1+Nop 4.0)

WhereLNO andfl_w1 are the average stopping distances of balls

released with initial velocitie¥, andV,<V,, respectively,

and’)\wm is the mean distance traveled by the first set of balls

as their velocity decreases frowvi to V4. Differentiating this
equation with respect t¥2, we obtain

ANV) _ LWV)
aV? V2

4.2

The right-hand side of Ed4.2) may be evaluated directly

from the slope of the experimental results fofV) as a
function of X; presented in the previous sectidRig. 7).

(Recall thatX;, the distance through which the ball is accel-
erated before hitting the rough plane, is directly proportional”’

to the initial kinetic energy and thl)&2 .) As we have already

mentioned, for large enough initial kinetic energies, the de-

pendence ofL onV2is linear. Therefore, Eq4.2) leads to

aVZ/aXF/J) =const. This is the energy gradient which, there-
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20

15

V, in arbitrary units

FIG. 8. Average stopping distande as a function ofV; in
arbitrary units, for6=2°, (A) D=10.3mm, ©) D=7.1 mm,
(>)D=6.3mm, @) D=4.7mm, K) D=3 mm, and ©)D
=2mm. In filled lines the calculated variation for the corresponding
D values.

Vmin)
v (4.9

We arrive then at two equations with four parameters:
K (which characterize the two friction forde/ i, and

— Vv
MW=5“—

| .
Using Eq.(4.2), K(D) was calculated by fitting to the

linear part of thel versusVi2 curves, as explained just after
Eqg. (4.2). K, which gives the constant frictional force, is a
function of D, the diameter of the ball, since the slopes of the

fore, must be equal to the force. We thus find that, at Iarg‘ﬁnear regions in Fig. 7 depend @. To determinea, which

enough velocities, a ball moving down a rough surface suf

fers a constant friction forcds = gV?/ a’):(\\/j =mK, and that

the experimental determination E(\Ek,-j provides a way to
evaluate it.

gives the viscous force, and,,, we fit Eq. (4.4) to the
curved regiongsmall X;) of Fig. 7. But, in this region, we
have sufficient data to make such a fit only f@r
=10.3 mm. However, note that for smafl, (small initial

On the other hand, for smaller initial kinetic energies wevelocity) the stopping distance appears to be roughly the

have found a different relation betwe&nand V2 which, in

same for allD values we studied. We, therefore, take the

fact, implies another mechanism for energy dissipation. Irvalues of a and Vy,,, which we determined forD

this case, we assume a viscous type friction faiee, pro-
portional to the velocity, For each pair of valuesf(D), we
define a velocity, for which the crossover between the two
types of frictional forces occurs.

In other words, we propose that a ball of diameler

moving down a rough surface made of grains of mean radius

r, and inclined an angl®, suffers a constant friction force
(F=mK), while its velocityV is larger tharV,(6,D). When
its velocity is betweerV,(0,D) andV;,(6,D) it suffers a
viscous frictional force E=maV), and finally it gets
trapped on the rough surface onlyW&sV ,i(6,D).

To verify this model, we calculate the traveled distance
that it gives and compare them with the experimental one
When a ball is released with a velocMy>V, , the distance it
travels according to this model is easily calculated to be

EM=%(VZ—VF>+2 1- 4.3

Vmin
V)’

On the other hand, if the release velocityis less tharVv,,
the distance traveled is

S ) — .
Jo experimental values df versusViz. With j thus evalu-

=10.3 mm as constant for dl.

Finally, the values o¥, for the various ballgi.e., differ-
entD) were evaluated as follows. The term that is indepen-
dent ofV in Eq. (4.3) is given by

. V|2+V|
=72k "a

(4.5

Vmin
\/a

This term, i.e. j, can be evaluated directly, for eabh from
the intersections with the vertical axis of the straight line fits

ated, Eq.(4.5) yields two values oV,(D). The smaller one
is taken as the physical value df(D), which corresponds to
a passage from more to less dissipative motion. Figure 8
shows the result of this analysis for all the studied values of
D. Here we plot the experimental average stopping distance,

L, as a function of the initiavelocity (not X;<\V2). The solid
lines show the calculated values using Eds4) and(4.3). It
can be seen that the agreement is very good. Note that since
a andV,,, have been taken as constants fora/lwe only
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TABLE I. Values of the different parameters, fé=2°. 0.30 T .
D (mm) 2 3 47 6.3 7.1 10.3
K (ms?) 49 26 12 08 07 0.5 0.20
V, (cmsY) 1.2 2.8 7.3 9.1 10.8 20.7
E
-
have two fitting parameters le andV,. So, the very good 0.10
agreement with experiments is obtained by tuning only two
parameters.
The values of the parameters are given in Table I. The
value ofV,,, for the largestD is consistent with zero. It is 0.00 - ‘ :
) . . i . 0.00 0.10 0.20 0.30
not p035|ble to give a meaningful value for the stopping dis- V2 ()
tance,L, when this value is smaller than the diameter of the
ball, D. We have founch=0.03 s ! for the prefactor in the FIG. 9. Average stopping distances f0r=5, =1°.

viscous force whil&kK andV, values range between 500 and
50cm s 2 and 1 and 21 cmis, respectively, for valuesiof  material parameters we use a normal coefficient of restitution
increasing from 4 to 20.6. e,=0.6 and a coefficient of friction of.=0.13.

Note that the maximum value of the viscous deceleration, First we checked that we find the same global behavior as
corresponding to the largest, is around 0.6 cms™. This  in the experiments. Figure 9 shows the mean stopping dis-
means that a ball wittb =10.3 mm that begins its motion tance, averaged over 60 balls per starting velocity as a func-
over the rough surface with, for example, a velocity oftion of the initial kinetic energy. We find the same behavior
50 cm/s, “feels” a constant deceleration of 50 cifauntil  as in the experiments, a linear region for higher starting ve-
it reaches a velocity of 21 cm/s. At that moment, the forcelocities, and a not so well defined different shape of the curve
abruptly becomes viscous and the deceleration decreases for smaller starting velocities.

0.6 cm s 2. The velocity then continues to decrease and so We now want to check whether the ball really covers the

does the friction force. When the velocity reaches the mi”Hargest part of in large jumps. Figure 10 shows the distance
mum valueV,, the ball gets trapped. _ covered between jumps as a function of time for different
This behavior is easily motivated physically. When thegiariing velocities. Obviously, the first part of the motion
ball is launched with a high ve_louty, collisions with the -gnsists of very wide jumpéovering a few particle diam-
bumps on the surface cause it to undergo rather larggiers at high starting velocitigsout then drops very rapidly
bounces. The time of flightt of these(ballistic) bounces is  tg much smaller distances. The times between collisions sud-
determined primarily by, (the velocity normal to the sur- genly exhibit the very regular behavior also observed in
face, dt=V, , and therefore the frequency of collisions is simulations of the steady state motifits,16: a number of
proportional toV *. With each collision the ball loses an small jumps, in the course of which all normal velocity with
amount of energy proportional ¥, , due to the coefficient respect to the ball on the plane is lost, followed by a rolling
of restitution. Therefore the energy lost per second, the prodover the rest of the ball. With the small angles of inclination
uct of these two quantities, is constant, i.e., a constant fricand velocities in this case, this rolling starts very early on the
tion force. More elaborate calculations find similar resultspall, as is obvious from the long distances between collisions
[9]. corresponding to them. In Fig. 11 the total distance covered
At smaller velocities, the bounces are not high, the ballin the same runs as in Fig. 10 is shown. Here, it becomes
probes the geometry of the surface and the motion is a Mixspyious that, indeed, most of titeis due to the large jumps
ture of boun_cing and roIIing._ The time of flight is, theref_ore, at the beginning of the motion, and we see a very clearly
more complicated. The motion closely resembles that in th@efined crossover in the friction force. Only the curve corre-

constant velocity regime, th_us giving viscous friction._TheSponding to Fig. 1G) does not exhibit this crossover. The
difference between this motion and the constant velocity re;as50n is that the initial jumps were already not much longer

gime is that here the energy gained by the ball moving downy, 3 5 particle diameter, since the initial velocity was quite
the slope cannot compensate for the energy lost. The ball, Thys, the discrepancy between the two regimes of the

eventually gets pinned. _ , __motion is not very strong. Besides, the starting velocity cor-
V| appears like a limit velocity at which the ball can just responding to Fig. 1@) is quite close to the lower limit of
fly over” the grains constituting the surface. the linear region in Fig. 9, i.e., close to a different type of
behavior.

From Fig. 10 it is also obvious that the stoppitige is
very similar in all cases, but that the onset of rolling appears

To investigate in more detail our conjectures concerninga bit later for higher starting velocities. As we assume in our
the motion of the particle we performed numerical simula-physical model in Sec. IV B, stopping only takes place after
tions of the system. The motion of the particle was simulatedhe ball velocity has dropped below a certain valireour
using soft sphere molecular dynamidsr details sed15]). case somewhere around 7 cjn/at which point the rolling
The sphere moves on a plane configuration scanned in fromstarts. This can be seen in Fig. 12, where we have plotted the
one of those used by Riguidel in his experimef@$ As  evolution of thex velocity of the ball for the same cases as in

V. NUMERICAL SIMULATIONS
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FIG. 11. Total distance covered by the ball as a function of time
for the same cases as in Fig. 10. Full line corresponda)ta@ashed
line to (b), dot-dashed line t¢c).

VI. CONCLUSION

We have investigated by means of experiments and nu-
merical simulations the movement of a single ball on a rough
inclined plane, at small inclination angle. This has given us a
better understanding of the energy dissipation at small
angles. We have shown that a ball that has a large enough
initial velocity V, first bounces on the rough surface and
suffers a constant friction force. Clearly in this case the ball
cannot be trapped if its velocity is larger than the crossover
velocity V| . When the velocity reachd , the friction force
suddenly becomes viscous: the dynamics of the motion is
now similar to that observed in regint The key for un-
derstanding these two mechanisms of dissipation, i.e., fric-
tion forces, is the difference in the nature of the collisions
when the velocity is above or below; as explained above.
We have also shown that the geometry of the surface plays
an important role in the trapping of the ball. In regifi¢he
ball is first slowed down gradually and when the velocity
finally reaches a threshold valig,, (which appears to be
independentof initial conditiong the ball is trapped. The
trapping probability decreases linearly with the inclination of
the plane. For the transition ange, this trappping mecha-
nism disappears and the ball crosses over into the dynamic
regimeB where it moves on the plane with a constant mean

FIG. 10. Distance covered by the ball between successive colli-
sions with the plane for three different starting velociti@s v;
=20 cm/s,(b) v;=30 cm/s, v;=40 cm/s. The diameter of balls on
the plane is 1 mm.

Fig. 10. The point where the ball starts to move in bounces
much smaller than a ball radithe stage prior to rollingis
marked with a small arrow for each trajectory.

It can also be seen from these curves that after a very
rapid drop in the velocity after the first few collisions with
the plane, the velocity seems to decrease in a linear fashion
though with a slope that seems to depend slightly on the
initial velocity. Then, when the particle enters the phase of
the motion consisting of a number of bounces with each ball
it passes(and eventually some rolling the friction force

v, (m/s)

0.40

0.30 |\
0.20 |
0.10

0.00

2.0

experienced by the particle drops to a much lower value and FIG. 12. Velocity of the bal(same as in Fig. 10 Full line

seems to be independent of the initial velocity.

corresponds t¢a), dashed line tdb), dot-dashed line t¢c).
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velocity and is subjected to a viscous friction fof&10]. In independant of initial kinetic energy. Numerical simulations
this regime, the ball can still be trapped by the occasional bigjave us “microscopic” details of the motioflike the time

defect on the surface but its trapping probability decreasebetween collisions which agreed with and confirmed the

exponentiallywith the angle of inclination. The fact that in experimental measurements and our explanations.
both regimedA andB the friction force is viscous just before

the ball gets trapped emphasizes the important fact that the

difference between the two regimésand B is not of dy- ACKNOWLEDGMENTS
namic origin, but due to two different trapping mechanisms.
The “divergence” of the mediah* of the stopping dis- This work was partially supported by French CNRS in the
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